# Comparative toxicity of coarse particles

PI: Terry Gordon

Co-I: Kaz Ito, Mort Lippmann, Lung Chi Chen

## Objective

- To determine the contribution of coarse particles to the adverse effects associated with exposure to ambient PM.
  - -We hypothesize that differences in the toxicity of coarse PM  $(PM_{10-2.5})$  samples are due to the source contributions of the particles

## Experimental Design

#### We will:

- 1) measure the differential toxicity of coarse particles both in vitro and in vivo;
- 2) identify whether coarse particles from urban and rural sources differ in toxicity.

# Study Design

 Design was copied from European scientists (Netherlands/Germany)

# Collection Apparatus







Foam Impaction Stage

## Study Design (cont...)

- several sites winter and summer
- 2 particle sizes (coarse and fine/UF)
  - -Co-located teflon and quartz
    filter samples
- In vivo bioassay mouse
- In vitro bioassay 3 cell types

# Airway Epithelial Cells

- 10 and 50 µg/ml in 96 well plates
- BEAS-2B cell line (crossvalidate with primary cells)
- Endpoints
  - Toxicity
  - -Cytokine production Luminex system
  - -ROS production (fluoroprobe and NFK-B reporter)

# Vascular Endothelial Cells

- 10 and 50 µg/ml in 96 well plates
- Primary human pulmonary vascular cells
- Endpoints
  - Toxicity
  - ROS production
  - C-reactive protein (risk marker for cardiovascular events)
  - tissue factor (a transmembrane procoagulant glycoprotein
  - von Willebrand factor and thrombin
     (coagulation factors)
  - iNOS and eNOS (inducible and endothelial forms of nitric oxide

# Vascular Endothelial (cont...)

- Endpoints
  - VEGF, required for vascular development
  - tissue plasminogen activator (tPA, plays a role in fibrinolysis and tissue remodeling)
  - IL-1, IL-6, and IL-8 (inflammatory cytokines)
  - VCAM-1 and ICAM-1 (adhesion molecules)
  - endothelin-1 (potent physiological vasoconstrictor).

# Cardiac Myocytes

- 50 µg/ml
- Primary rat neonatal cardiac cells
- Endpoints
  - -Beating frequency
  - mRNA

# Cardiac Myocytes

Genes to be measured in cardiac myocytes

| Gene              | Function                  |
|-------------------|---------------------------|
| Cx40              | Connexin 40, gap junction |
| Cx43              | Connexin 43, gap junction |
| Kv1               | Potassium channel         |
| Kv4.2             | Potassium channel         |
| KvLQT1            | Potassium channel         |
| L-type Ca channel | calcium channel           |
| IL-6              | Inflammatory cytokine     |
| IL1               | Inflammatory cytokine     |
| HSP 70            | Heat shock protein        |
| GAPDH             | House keeping             |

#### In Vivo Studies

- BALB/c mice
- 50 μg/animal by oropharyngeal aspiration
- Pulmonary endpoints
  - Inflammation and injury
- Cardiovascular endpoints
  - -Vascular changes in protein and mRNA for subset of factors studied in vitro

## Other Sampling

- Co-located Sioutas personal impactors
  - -Teflon (XRF measurement elements)
  - Quartz (OC/EC measurement



• Pass Mesh Cap Se monitor



# Passive Sampler



# Source Apportionment

• Kaz Ito

### Expected Results

 Previous study on coarse, fine, and UF PM done in collaboration with EPA PM Centers

# The Multi-City Ambient PM Study (MAPS)



# **ROI Summary**

Dose =  $50 \mu g/ml$ 

HC: Hunter College SF: Sterling Forest

SB: South Bronx

PH: Phoenix

UT: Utah

SE: Seattle



#### Effect of Aspirated PM in Mice



**S** = Seattle

**U** = Utah

 $\mathbf{B} = \operatorname{Bronx}$ 

**SF** = Sterling Forest

Gilmour

# Factor Loadings for 5 Sites Using ChemVol Samplers

| CITY            | SIZE   | SOIL  | TRAFFIC | OIL   |
|-----------------|--------|-------|---------|-------|
| UTAH            | Coarse | 1.82  | -0.79   | -0.31 |
| SEATTLE         | Coarse | 2.54  | -0.72   | -0.14 |
| STERLING FOREST | Coarse | 0.43  | 0.31    | -0.21 |
| SOUTH BRONX     | Coarse | -0.06 | 3.78    | 0.14  |
| PHOENIX         | Coarse | 1.09  | 0.65    | -0.43 |
| MANHATTAN       | Coarse | 0.42  | 1.55    | 0.62  |

Lall and Thurston

## Project Time Table

#### Month Task

0 - 12 To collect coarse PM at urban and rural sites during Winter and

Summer for 2-weeks/site.

12 - 24 To analyze 2-week samples and test *in\_vitro* and *in\_vivo*. Continue

sampling at multiple urban and rural sites in the LA and NYC

metropolitan areas.

21 - 27 To collect daily coarse PM samples for 6 months at 2 sites. Begin

source apportionment analyses with results of 2-week samples

27 - 34 To analyze 6-month samples and test *in vitro* and *in vivo*.

QuickTime™ and a TIFF (LZW) decompressor are needed to see this picture.